题目内容
【题目】如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,当两条纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .
【答案】17
【解析】
根据矩形的宽度不变,当两纸条的对角线互相重合时,重叠部分的面积最大,边长也最大,此时设菱形的边长为x,然后表示出BC,再利用勾股定理列式进行计算即可求出x的值,然后根据菱形的周长公式列式进行计算即可得解.
解:如图所示时,重叠部分构成的菱形的周长最大,
设AB=x,
∵矩形纸条的长为8,宽为2,
∴BC=8-x,
在Rt△ABC中,AB2=AC2+BC2,
即x2=22+(8-x)2,
整理得,16x=68,
解得x=,
故菱形周长的最大值4×=17.
故答案为:17.
本题考查了菱形的性质,利用菱形的面积确定出菱形的边长最大时的情况是解题的关键,还利用了勾股定理.
练习册系列答案
相关题目
【题目】在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:
次数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
黑棋数 | 1 | 3 | 0 | 2 | 3 | 4 | 2 | 1 | 1 | 3 |
根据以上数据,估算袋中的白棋子数量为( )
A. 60枚 B. 50枚 C. 40枚 D. 30枚