题目内容
【题目】如图,在ΔABC中,∠BAC=90°,AB=AC,点D在 BC上,且BD=BA,点E在BC的延长线上,且CE=CA,
(1)试求∠DAE的度数.
(2)如果把第(1)题中“AB=AC”的条件舍去,其余条件不变,那么∠DAE的度数会改变吗?
(3)如果把第(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,那么∠DAE与∠BAC有怎样的大小关系?
【答案】(1)45°;(2)不改变;(3)∠DAE=∠BAC
【解析】试题分析:(1)要求∠DAE,必先求∠BAD和∠CAE,由∠BAC=90°,AB=AC,可求∠B=∠ACB=45°,又因为BD=BA,可求∠BAD=∠BDA=67.5°,再由CE=CA,可求∠CAE=∠E=22.5°,所以∠DAE=∠BAE-∠BAD=112.5°-67.5°=45度;
(2)先设∠CAE=x,由已知CA=CE可求∠ACB=∠CAE+∠E=2x,∠B=90°-2x,又因为BD=BA,所以∠BAD=∠BDA=x+45°,再根据三角形的内角和是180°,可求∠BAE=90°+x,即∠DAE=∠BAE-∠BAD=(90°+x)-(x+45°)=45度;
(3)可设∠CAE=x,∠BAD=y,则∠B=180°-2y,∠E=∠CAE=x,所以∠BAE=180°-∠B-∠E=2y-x,∠BAC=∠BAE-∠CAE=2y-x-x=2y-2x,即∠DAE=∠BAC.
试题解析:(1)∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∵BD=BA,
∴∠BAD=∠BDA=(180°-∠B)=67.5°,
∵CE=CA,
∴∠CAE=∠E=∠ACB=22.5°,
在△ABE中,∠BAE=180°-∠B-∠E=112.5°,
∴∠DAE=∠BAE-∠BAD=112.5°-67.5°=45°;
(2)不改变.
设∠CAE=x,
∵CA=CE,
∴∠E=∠CAE=x,
∴∠ACB=∠CAE+∠E=2x,
在△ABC中,∠BAC=90°,
∴∠B=90°-∠ACB=90°-2x,
∵BD=BA,
∴∠BAD=∠BDA=(180°-∠B)=x+45°,
在△ABE中,∠BAE=180°-∠B-∠E
=180°-(90°-2x)-x=90°+x,
∴∠DAE=∠BAE-∠BAD
=(90°+x)-(x+45°)
=45°;
(3)∠DAE=∠BAC,
理由:设∠CAE=x,∠BAD=y,
则∠B=180°-2y,∠E=∠CAE=x,
∴∠BAE=180°-∠B-∠E=2y-x,
∴∠DAE=∠BAE-∠BAD=2y-x-y=y-x,
∠BAC=∠BAE-∠CAE=2y-x-x=2y-2x,
∴∠DAE=∠BAC.