题目内容
【题目】抛物线y=﹣2x2开口方向是( )A.向上B.向下C.向左D.向右
【答案】B【解析】解:∵a=﹣2<0, ∴抛物线开口向下.故选B.根据a的正负判断抛物线开口方向.
【题目】用一批完全相同的正多边形木板铺地面,要求顶点聚在一起,且木板之间没有缝隙,下列木板不符合要求的( )
A.正三角形木板B.正方形木板C.正五边形木板D.正六边形木板
【题目】抛物线y=2(x﹣3)2+1的顶点坐标是( )A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)
【题目】计算:2×(﹣5)+3.
【题目】如图,在ΔABC中,∠BAC=90°,AB=AC,点D在 BC上,且BD=BA,点E在BC的延长线上,且CE=CA,
(1)试求∠DAE的度数.
(2)如果把第(1)题中“AB=AC”的条件舍去,其余条件不变,那么∠DAE的度数会改变吗?
(3)如果把第(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,那么∠DAE与∠BAC有怎样的大小关系?
【题目】四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是( )
A.OA=OB=OC=OD,AC⊥BDB.AB∥CD,AC=BD
C.AD∥BC,∠A=∠CD.OA=OC,OB=OD,AB=BC
【题目】在直角坐标系中,点(2,1)关于x轴的对称点是( )
A. (-2,1) B. (-2,-1) C. (2,-1) D. (1,2)
【题目】学校安排学生住宿,若每室住8人,则有12人无法安排;若每室住9人,可空出2个房间.这个学校的住宿生有多少人?宿舍有多少房间?
【题目】如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A点.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,则当t=_________秒时,△PEC与△QFC全等.