题目内容
【题目】如图,半圆O的直径DE=12 cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=12 cm.半圆O以2 cm/s的速度自左向右运动,在运动过程中,点D,E始终在直线BC上.设运动时间为t s,当t=0时,半圆O在△ABC的左侧,OC=8 cm.
(1)当t=________s时,半圆O与AC所在直线第一次相切;点C到直线AB的距离为________.
(2)当t为何值时,直线AB与半圆O所在的圆相切?
【答案】(1)1,6 cm;(2)当t为4或16时,直线AB与半圆O所在的圆相切.
【解析】
(1)求出路程EC的长,即可以求时间t=1,作C到AB的距离CF,利用直角三角形中30°角所对的直角边是斜边的一半可以得:CF=6;
(2)根据C到AB的距离为6cm,圆的半径为6cm,所以O与C重合,即当O点运动到C点时,半圆O与△ABC的边AB相切,t=8÷2=4秒.
(1)∵DE=12 cm,
∴OE=OD=6 cm.
∵OC=8 cm,
∴EC=8-6=2(cm),
∴t=2÷2=1(s),
故当t=1时,半圆O与AC所在直线第一次相切.
如图①,过点C作CF⊥AB于点F.
在Rt△BCF中,∵∠ABC=30°,BC=12 cm,
∴CF=BC=6 cm.
故答案为1,6 cm.
(2)如图②,当半圆O在直线AB的左侧,与直线AB相切时,过点O作OM⊥AB于点M,则OM=6 cm.
∵∠ABC=30°,
∴OB=2OM=12 cm.
又∵BC=12 cm,
∴当点O与点C重合,即当点O运动到点C时,半圆O与△ABC的边AB相切,此时,点O运动了8 cm,运动时间t=8÷2=4.
如图③,当半圆O所在的圆在直线AB的右侧与直线AB相切时,设切点为Q,则OQ⊥AB,OQ=6 cm.
在Rt△QOB中,∠OBQ=∠ABC=30°,则OB=2OQ=12 cm,此时点O运动了12+12+8=32(cm),运动时间t=32÷2=16.
综上所述,当t为4或16时,直线AB与半圆O所在的圆相切.