题目内容

【题目】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).

(1)填空:

①A、B两点间的距离AB=   ,线段AB的中点表示的数为   

②用含t的代数式表示:t秒后,点P表示的数为   ;点Q表示的数为   

(2)求当t为何值时,PQ=AB;

(3)当点P运动到点B的右侧时,PA的中点为M,NPB的三等分点且靠近于P点,求PM﹣BN的值.

【答案】(1)10,3;﹣2+3t,8﹣2t;(2)t=13;(3)5

【解析】

(1)①根据点A表示的数为﹣2,点B表示的数为8,即可得到A、B两点间的距离以及线段AB的中点表示的数;依据点P,Q的运动速度以及方向,即可得到结论;

(2)由t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,于是得到PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,列方程即可得到结论;

(3)依据PA的中点为M,N为PB的三等分点且靠近于P点,运用线段的和差关系进行计算,即可得到PM﹣BN的值.

解:(1)8﹣(﹣2)=10,﹣2+×10=3,

②由题可得,点P表示的数为﹣2+3t,点Q表示的数为8﹣2t;

(2)t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,

PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,

PQ=AB=×10=5,

|5t﹣10|=5,

解得:t=13,

∴当t=13时,PQ=AB;

(3)PA的中点为M,NPB的三等分点且靠近于P点,

MP=AP=×3t=t,

BN=BP=(AP﹣AB)=×(3t﹣10)=2t﹣

PM﹣BN=t﹣(2t﹣)=5.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网