题目内容
【题目】己知:在△ABC中,∠CAB=2α,且0°<α<30°,AP平分∠CAB.
(1)如图,若α=21°,∠ABC=32°,且AP交BC于点P,试探究线段AB、AC与PB之间的数量关系,并对你的结论加以证明;
(2)如图,若∠ABC=60°-α,点P在△ABC的内部,且使∠CBP=30°,直接写出∠APC的度数________(用含α的代数式表示).
【答案】(1)(1)AB-AC=PB,证明见解析;(2)120°+α.
【解析】
(1)在AB上截取AD,使AD=AC.连PD,证明△ACP≌△ADP,根据全等三角形的性质、三角形内角和定理证明PB=DB,证明结论;
(2)延长AC至M,使AM=AB,连接PM,BM,证明△AMP≌△ABP,根据等边三角形的性质、三角形内角和定理证明.
(1)AB-AC=PB,
在AB上截取AD,使AD=AC.连PD,
∵AP平分∠CAB,
∴∠CAP=∠BAP,
在△ACP和△ADP中,
∴△ACP≌△ADP(SAS),
∴∠C=∠ADP.
∵△ABC中,∠CAB=42°,∠ABC=32°,
∴∠C=180°-∠CAB-∠ABC=180°-42°-32°=106°.
∴∠ADP=106°.
∴∠BDP=180°-∠ADP=180°-106°=74°,
∠BPD=∠ADP-∠ABC=106°-32°=74°.
∴∠BDP=∠BPD.
∴PB=DB,
∴AB-AC=AB-AD=DB=PB;
(2)如图2,延长AC到M使AM=AB, 120°+α.
【题目】在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”. 最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:
品种 | 产量(斤/每棚) | 销售量(元/每斤) | 成本(元/每棚) |
香瓜 | 2000 | 12 | 8000 |
甜瓜 | 4500 | 3 | 5000 |
现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.
根据以上提供的信息,请你解答下列问题:
(1)求出y与x之间的函数关系式;
(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚? 才能使获得的利润不低于10万元.