题目内容
【题目】如图,点C为线段AE上一动点(不与点A,点E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下四个结论,①AD=BE;②CP=CQ;③OB=DE;④PQ∥AE,一定成立的结论有_____(请把正确结论的序号填在横线上).
【答案】①②④.
【解析】
根据等边三角形的三边都相等,三个角都是60°,可以证明△ACD与△BCE全等,根据全等三角形对应边相等可得AD=BE,所以①正确,对应角相等可得∠CAD=∠CBE,然后证明△ACP与△BCQ全等,根据全等三角形对应角相等可得PC=PQ,所以②正确;从而得到△CPQ是等边三角形,再根据等腰三角形的性质可以找出相等的角,从而证明PQ∥AE,所以④正确
解:∵等边△ABC和等边△CDE,
∴AC=BC,CD=CE,∠ACB=∠ECD=60°,
∴180°﹣∠ECD=180°﹣∠ACB,
即∠ACD=∠BCE,
在△ACD与△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE,故①正确;
∵△ACD≌△BCE(已证),
∴∠CAD=∠CBE,
∵∠ACB=∠ECD=60°(已证),
∴∠BCQ=180°﹣60°×2=60°,
∴∠ACB=∠BCQ=60°,
在△ACP与△BCQ中,
,
∴△ACP≌△BCQ(ASA),
∴AP=BQ,PC=QC,故②正确;
∴△PCQ是等边三角形,
∴∠CPQ=60°,
∴∠ACB=∠CPQ,
∴PQ∥AE,故④正确;
故答案为①②④.
练习册系列答案
相关题目