题目内容

【题目】如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.

(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.
(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.

【答案】
(1)

解:CF=BD,且CF⊥BD,证明如下:

∵∠FAD=∠CAB=90°,

∴∠FAC=∠DAB.

在△ACF和△ABD中,

∴△ACF≌△ABD

∴CF=BD,∠FCA=∠DBA,

∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,

∴FC⊥CB,

故CF=BD,且CF⊥BD


(2)

解:(1)的结论仍然成立,如图2,∵∠CAB=∠DAF=90°,

∴∠CAB+∠CAD=∠DAF+∠CAD,

即∠CAF=∠BAD,

在△ACF和△ABD中,

∴△ACF≌△ABD(SAS),

∴CF=BD,∠ACF=∠B,

∵AB=AC,∠BAC=90°,

∴∠B=∠ACB=45°,

∴∠BCF=∠ACF+∠ACB=45°+45°=90°,

∴CF⊥BD;

∴CF=BD,且CF⊥BD.


【解析】(1)根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,根据全等三角形对应边相等可得CF=BD,全等三角形对应角相等可得∠ACF=∠B,然后求出∠BCF=90°,从而得到CF⊥BD;(2)先求出∠CAF=∠BAD,然后与①的思路相同求解即可;
【考点精析】关于本题考查的等腰直角三角形,需要了解等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网