题目内容
【题目】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是( )
【答案】C.
【解析】
试题解析:A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a-x+b-x=c,求出x=,故本选项错误;
B、设圆切AB于F,圆的半径是y,连接OF,如图(2),
则△BCA∽△OFA,
∴,
∴,解得:y=,故本选项错误;
C、连接OE、OD,
∵AC、BC分别切圆O于E、D,
∴∠OEC=∠ODC=∠C=90°,
∵OE=OD,
∴四边形OECD是正方形,
∴OE=EC=CD=OD,
设圆O的半径是r,
∵OE∥BC,∴∠AOE=∠B,
∵∠AEO=∠ODB,
∴△ODB∽△AEO,
∴,
,
解得:r=,故本选项正确;
从上至下三个切点依次为D,E,F;并设圆的半径为x;
容易知道BD=BF,所以AD=BD-BA=BF-BA=a+x-c;
又∵b-x=AE=AD=a+x-c;所以x=,故本选项错误.
故选C.
练习册系列答案
相关题目