题目内容
【题目】抛物线与轴交于点(0,3).
(1)求的值及抛物线与轴的交点坐标;
(2)取什么值时,抛物线在轴下方?
(3)取什么值时,的值随着的增大而增大?
【答案】(1)=3, (-1,0),(3,0);(2)x<-1或x>3;(3).
【解析】
(1)将点代入二次函数的解析式可求出m的值,然后可得二次函数的解析式,再令即可求出抛物线与轴的交点坐标;
(2)根据二次函数的图象和抛物线与轴的交点坐标即可得;
(3)将二次函数的解析式化为顶点式,得出其增减性即可得.
(1)将点代入得:
则二次函数的解析式为
令得:
解得
则抛物线与轴的交点坐标为,;
(2)二次函数的开口向下
结合(1)可得:当或时,抛物线在轴下方;
(3)二次函数的顶点式为
二次函数的增减性为:当时,y随x的增大而增大;当时,y随x的增大而减小
则当时,的值随着的增大而增大.
练习册系列答案
相关题目
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.