题目内容

【题目】在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.

(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;
(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,
(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.

【答案】
(1)

解:AG⊥DG,AG=DG,

证明:延长DG与BC交于H,连接AH、AD,

∵四边形DCEF是正方形,

∴DE=DC,DE∥CF,

∴∠GBH=∠GED,∠GHB=∠GDE,

∵G是BC的中点,

∴BG=EG,

在△BGH和△EGD中

∴△BGH≌△EGD(AAS),

∴BH=ED,HG=DG,

∴BH=DC,

∵AB=AC,∠BAC=90°,

∴∠ABC=∠ACB=45°,

∵∠DCF=90°,

∴∠DCB=90°,

∴∠ACD=45°,

∴∠ABH=∠ACD=45°,

在△ABH和△ACD中

∴△ABH≌△ACD(SAS),

∴∠BAH=∠CAD,AH=AD,

∵∠BAH+∠HAC=90°,

∴∠CAD+∠HAC=90°,即∠HAD=90°,

∴AG⊥GD,AG=GD;


(2)

解:AG⊥GD,AG=DG;

证明:延长DG与BC交于H,连接AH、AD,

∵四边形DCEF是正方形,

∴DE=DC,DE∥CF,

∴∠GBH=∠GED,∠GHB=∠GDE,

∵G是BC的中点,

∴BG=EG,

在△BGH和△EGD中

∴△BGH≌△EGD(AAS),

∴BH=ED,HG=DG,

∴BH=DC,

∵AB=AC,∠BAC=∠DCF=60,

∴∠ABC=60°,∠ACD=60°,

∴∠ABC=∠ACD=60°,

在△ABH和△ACD中

∴△ABH≌△ACD(SAS),

∴∠BAH=∠CAD,AH=AD,

∴∠BAC=∠HAD=60°;

∴AG⊥HD,∠HAG=∠DAG=30°,

∴tan∠DAG=tan30°==

∴AG=DG.


(3)

解:DG=AGtan

证明:延长DG与BC交于H,连接AH、AD,

∵四边形DCEF是正方形,

∴DE=DC,DE∥CF,

∴∠GBH=∠GED,∠GHB=∠GDE,

∵G是BC的中点,

∴BG=EG,

在△BGH和△EGD中

∴△BGH≌△EGD(AAS),

∴BH=ED,HG=DG,

∴BH=DC,

∵AB=AC,∠BAC=∠DCF=α,

∴∠ABC=90°﹣,∠ACD=90°﹣

∴∠ABC=∠ACD,

在△ABH和△ACD中

∴△ABH≌△ACD(SAS),

∴∠BAH=∠CAD,AH=AD,

∴∠BAC=∠HAD=α;

∴AG⊥HD,∠HAG=∠DAG=

∴tan∠DAG=tan=

∴DG=AGtan


【解析】(1)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得∠HAD=90°,即可求得AG⊥GD,AG=GD;
(2)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等边三角形,即可证得AG⊥GD,AG=DG;
(3)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等腰三角形,即可证得DG=AGtan
【考点精析】通过灵活运用等腰三角形的性质和菱形的性质,掌握等腰三角形的两个底角相等(简称:等边对等角);菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网