题目内容
【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?
【答案】
(1)
解:设该函数的表达式为y=kx+b,根据题意,得
,
解得:.
故该函数的表达式为y=﹣2x+100;
(2)
解:根据题意得,
(﹣2x+100)(x﹣30)=150,
解这个方程得,x1=35,x2=45,
故每件商品的销售价定为35元或45元时日利润为150元;
(3)
解:根据题意,得
w=(﹣2x+100)(x﹣30)
=﹣2x2+160x﹣3000
=﹣2(x﹣40)2+200,
∵a=﹣2<0 则抛物线开口向下,函数有最大值,
即当x=40时,w的值最大,
∴当销售单价为40元时获得利润最大.
【解析】(1)根据待定系数法解出解析式即可;
(2)根据题意列出方程解答即可;
(3)根据题意列出函数解析式,利用函数解析式的最值解答即可.
【题目】一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克) | … | 50 | 60 | 70 | 80 | … |
销售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?