题目内容
【题目】如图,已知点A在第一象限,点C的坐标为(1,0),△AOC是等边三角形,现把△AOC按如下规律进行旋转:第1次旋转,把△AOC绕点C按顺时针方向旋转120°后得到△A1O1C,点A1、O1分别是点A、O的对应点,第2次旋转,把△A1O1C绕着点A1按顺时针方向旋转120°后得到△A1O2C1,点O2、C1分别是点O1、C的对应点,第3次旋转,把△A1O2C1绕着点O2按顺时针方向旋转120°后得到△A2O2C2,点A2、C2分别是点A1、C1的对应点,……,依此规律,第6次旋转,把△A3O4C3绕着点O4按顺时针方向旋转120°后得到△A4O4C4,点A4、C4分别是点A3、C3的对应点,则点A4的坐标是( )
A.(,)B.(6,0)C.(,)D.(7,0)
【答案】A
【解析】
分别求出A1A2,A3,A4的坐标即可判断.
由题意A1(2,0),A2(,),A3(5,),A4(,),
故选:A.
练习册系列答案
相关题目
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);并求出售价为多少元时获得最大利润,最大利润是多少?