题目内容

【题目】如图,ABCD中,AB=13,AD=10,将ABCD沿AE翻折后,点B恰好与点C重合,则点C到AD的距离为(
A.5
B.12
C.3
D.

【答案】B
【解析】解:∵翻折后点B恰好与点C重合,

∴AE⊥BC,BE=CE,

∵BC=AD=10,

∴BE=5,

∴AE= =12,

∵AD∥BC,

∴点C到AD的距离=AE,

故点C到AD的距离是12,

故选B.

【考点精析】认真审题,首先需要了解平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分),还要掌握翻折变换(折叠问题)(折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网