题目内容
【题目】如图,一架无人机在距离地面高度为21.4米的点B处,测得地面点A的俯角为47°,接着,这架无人机从点B沿仰角为37°的方向继续飞行20米到达点C,此时测得点C恰好在地面点D的正上方,且A,D两点在同一水平线上,求A,D两点之间的距离.(结果精确到1米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin47°≈0.73,cos47°≈0.68,tan47°≈1.07,≈2.45)
【答案】A,D两点之间的距离约为19米.
【解析】
过点B作BE⊥CD于点E,过点A作AF⊥BE于点F,由题意可得,四边形AFED是矩形,然后根据三角函数求出BE和BF的长,进而即可求出A、D两点之间的距离.
解:如图,过点B作BE⊥CD于点E,过点A作AF⊥BE于点F,
由题意可知:
CD⊥AD,
∴四边形AFED是矩形,
∴AD=EF,
在Rt△BCE中,BC=20,∠CBE=37°,
∴BE=BCcos37°=20×0.80≈39.2,
在Rt△ABF中,AF=21.4,∠ABF=47°,
∴BF=≈20,
∴EF=BE﹣BF≈39.2﹣20≈19,
∴AD=EF≈19(米).
答:A,D两点之间的距离约为19米.
【题目】某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:
商品 | 甲 | 乙 |
进价(元/件) | ||
售价(元/件) | 200 | 100 |
若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.
(1)求甲、乙两种商品的进价是多少元?
(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为件(),设销售完50件甲、乙两种商品的总利润为元,求与之间的函数关系式,并求出的最小值.
【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.
运动员丙测试成绩统计表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 5 | 8 | 8 | 7 |
运动员丙测试成绩的平均数和众数都是7,
(1)成绩表中的__________,_________;
(2)若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?请用你所学过的统计量加以分析说明(参考数据:三人成绩的方差分别为、、)
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球从乙手中传出,球传一次甲得到球的概率是____.