题目内容

【题目】如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.

(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.

【答案】
(1)证明:∵四边形ABCD是正方形,

∴AB=CB,∠ABC=90°,

∵△EBF是等腰直角三角形,其中∠EBF=90°,

∴BE=BF,

∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,

∴∠ABF=∠CBE.

在△ABF和△CBE中,有

∴△ABF≌△CBE(SAS)


(2)解:△CEF是直角三角形.理由如下:

∵△EBF是等腰直角三角形,

∴∠BFE=∠FEB=45°,

∴∠AFB=180°﹣∠BFE=135°,

又∵△ABF≌△CBE,

∴∠CEB=∠AFB=135°,

∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,

∴△CEF是直角三角形.


【解析】(1)由四边形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通过角的计算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可证出△ABF≌△CBE;(2)根据△EBF是等腰直角三角形可得出∠BFE=∠FEB,通过角的计算可得出∠AFB=135°,再根据全等三角形的性质可得出∠CEB=∠AFB=135°,通过角的计算即可得出∠CEF=90°,从而得出△CEF是直角三角形.本题考查了正方形的性质.全等三角形的判定及性质、等腰直角三角形的性质以及角的计算,解题的关键是:(1)根据判定定理SAS证明△ABF≌△CBE;(2)通过角的计算得出∠CEF=90°.本题属于中档题,难度不大,解决该题型题目时,通过正方形和等腰三角形的性质找出相等的边,再通过角的计算找出相等的角,以此来证明两三角形全等是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网