题目内容
【题目】如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是【 】
A.AE=6cm B.
C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形
【答案】D。
【解析】(1)结论A正确,理由如下:
解析函数图象可知,BC=10cm,ED=4cm,
故AE=AD﹣ED=BC﹣ED=10﹣4=6cm。
(2)结论B正确,理由如下:
如图,连接EC,过点E作EF⊥BC于点F,
由函数图象可知,BC=BE=10cm,,
∴EF=8。∴。
(3)结论C正确,理由如下:
如图,过点P作PG⊥BQ于点G,
∵BQ=BP=t,∴。
(4)结论D错误,理由如下:
当t=12s时,点Q与点C重合,点P运动到ED的中点,
设为N,如图,连接NB,NC。
此时AN=8,ND=2,由勾股定理求得:NB=,NC=。
∵BC=10,
∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形。
故选D。
练习册系列答案
相关题目