题目内容
【题目】如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知,当Q为BF中点时,.
(1)判断DE与BF的位置关系,并说明理由;
(2)求DE,BF的长;
(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系;②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.
【答案】(1),理由见解析;(2) ;(3)①;②
【解析】
(1)推出∠AED=∠ABF,即可得出DE∥BF;
(2)求出DE=12,MN=10,把代入,解得:x=6,得到NQ=6,得出QM=4,由FQ=QB,BM=2FN,得出FN=2,BM=4,即可得出结果;
(3)①连接EM并延长交BC于点H,易证四边形DFME是平行四边形,得出DF=EM,求出∠DEA=∠FBE=∠FBC=30°,∠ADE=∠CDE=∠FME=60°,∠MEB=∠FBE=30°,得出∠EHB=90°,DF=EM=BM=4,MH=2,EH=6,由勾股定理得 ,,当DP=DF时 ,求出 ,得到BQ>BE;
②(Ⅰ)当PQ经过点D时,y=0,则x=10;
(Ⅱ)当PQ经过点C时,由FQ∥DP,得出△CFQ∽△CDP,则,即可求得 ;
(Ⅲ)当PQ经过点A时,由PE∥BQ,得出△APE∽△AQB,则 ,根据勾股定理得 ,则 , ;由图可知,PQ不可能过点B.
解:(1)DE与BF的位置关系为:DE∥BF,理由如下:
如图1所示:
∵∠A=∠C=90°,
∴∠ADC+∠ABC=360°-(∠A+∠C)=180°,
∵DE、BF分别平分∠ADC、∠ABC,
∵∠ADE+∠AED=90°,
∴∠AED=∠ABF,
∴DE∥BF;
(2)令x=0,得y=12,
∴DE=12,
令y=0,得x=10,
∴MN=10,
把代入,
解得:x=6,即NQ=6,
∴QM=10-6=4,
∵Q是BF中点,
∴FQ=QB,
∵BM=2FN,
∴FN+6=4+2FN,
解得:FN=2,
∴BM=4,
∴BF=FN+MN+MB=16;
(3)①连接EM并延长交BC于点H,如图2所示:
∵FM=2+10=12=DE,DE∥BF,
∴四边形DFME是平行四边形,
∴DF=EM,
∵AD=6,DE=12,∠A=90°,
∴∠DEA=30°,
∴∠DEA=∠FBE=∠FBC=30°,
∴∠ADE=60°,
∴∠ADE=∠CDE=∠FME=60°,
∴∠DFM=∠DEM=120°,
∴∠MEB=180°-120°-30°=30°,
∴∠MEB=∠FBE=30°,
∴∠EHB=180°-30°-30°-30°=90°,DF=EM=BM=4,
,
∴EH=4+2=6,
由勾股定理得: ,
∴ ,
当DP=DF时, ,
解得: ,
,
,
BQ>BE;
②(Ⅰ)当PQ经过点D时,如图3所示:
y=0,则x=10;
(Ⅱ)当PQ经过点C时,如图4所示:
∵BF=16,∠FCB=90°,∠CBF=30°,
,
CD=8+4=12,
∵FQ∥DP,
∴△CFQ∽△CDP,
∴ ,
∴ ,
解得: ;
(Ⅲ)当PQ经过点A时,如图5所示:
∵PE∥BQ,
∴△APE∽△AQB,
∴ ,
根据勾股定理得: ,
∴ ,
,
解得: ;
由图可知,PQ不可能过点B;
综上所述,当x=10或或时,PQ所在的直线经过四边形ABCD的一个顶点.