题目内容
已知⊙O的半径为R,⊙P的半径为r(r<R),且⊙P的圆心P在⊙O上.设C是⊙P上一点,过点C与⊙P相切的直线交⊙O于A、B两点.
(1)若点C在线段OP上,(如图1).求证:PA•PB=2Rr;
(2)若点C不在线段OP上,但在⊙O内部如图(2).此时,(1)中的结论是否成立?若成立,请给予证明;若不成立,说明理由;
(3)若点C在⊙O的外部,如图(3).此时,PA•PB与R,r的关系又如何?请直接写出,不要求给予证明或说明理由.
(1)若点C在线段OP上,(如图1).求证:PA•PB=2Rr;
(2)若点C不在线段OP上,但在⊙O内部如图(2).此时,(1)中的结论是否成立?若成立,请给予证明;若不成立,说明理由;
(3)若点C在⊙O的外部,如图(3).此时,PA•PB与R,r的关系又如何?请直接写出,不要求给予证明或说明理由.
(1)证明:延长PO交⊙O于点Q,
连接AQ,如图(1),
∵AB与⊙P相切于点C,且PC是⊙P的半径,
∴AB⊥PC,即∠PCB=90°.
又∵PQ是⊙O的直径,
∴∠PAQ=90°.
∵∠PQA=∠PBC,
∴Rt△PAQ∽Rt△PCB,
∴
=
,
即PA•PB=PQ•PC.
又∵PQ=2R,PC=r,
∴PA•PB=2Rr;
(2)(1)中的结论成立.
证明:连接PO并延长交⊙O于点Q,
连接AQ,PC,如图(2),
由已知条件,得
∠PAQ=∠PCB=90°.
又∠PQA=∠PBC,
∴Rt△PAQ∽Rt△PCB,
∴
=
,
即PA•PB=PQ•PC=2Rr;
(3)PA•PB=2Rr.
连接AQ,如图(1),
∵AB与⊙P相切于点C,且PC是⊙P的半径,
∴AB⊥PC,即∠PCB=90°.
又∵PQ是⊙O的直径,
∴∠PAQ=90°.
∵∠PQA=∠PBC,
∴Rt△PAQ∽Rt△PCB,
∴
PA |
PC |
PQ |
PB |
即PA•PB=PQ•PC.
又∵PQ=2R,PC=r,
∴PA•PB=2Rr;
(2)(1)中的结论成立.
证明:连接PO并延长交⊙O于点Q,
连接AQ,PC,如图(2),
由已知条件,得
∠PAQ=∠PCB=90°.
又∠PQA=∠PBC,
∴Rt△PAQ∽Rt△PCB,
∴
PA |
PC |
PQ |
PB |
即PA•PB=PQ•PC=2Rr;
(3)PA•PB=2Rr.
练习册系列答案
相关题目