题目内容
【题目】已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN= π,在△ABC中,角A、B、C所对的边分别是a、b、c.
(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;
(Ⅱ)若c= ,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.
【答案】解:(Ⅰ)∵a、b、c成等差,且公差为2,∴a=c﹣4、b=c﹣2. 又∵ , ,
∴ ,∴ ,
恒等变形得 c2﹣9c+14=0,解得c=7,或c=2.
又∵c>4,∴c=7.…(6分)
(Ⅱ)在△ABC中,由正弦定理可得 ,
∴ ,AC=2sinθ, .
∴△ABC的周长f(θ)=|AC|+|BC|+|AB|=
= = ,
又∵ ,∴ ,
∴当 ,即 时,f(θ)取得最大值
【解析】(Ⅰ)由题意可得 a=c﹣4、b=c﹣2.又因 , ,可得 ,恒等变形得 c2﹣9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=2sinθ, .△ABC的周长f(θ)=|AC|+|BC|+|AB|= .再由 ,利用正弦函数的定义域和值域,求得f(θ)取得最大值.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.
练习册系列答案
相关题目