题目内容

【题目】已知圆:(x+cosθ)2+(y﹣sinθ)2=1,直线l:y=kx.给出下面四个命题: ①对任意实数k和θ,直线l和圆M有公共点;
②对任意实数k,必存在实数θ,使得直线l和圆M相切;
③对任意实数θ,必存在实数k,使得直线l和圆M相切;
④存在实数k和θ,使得圆M上有一点到直线l的距离为3.
其中正确的命题是(写出所以正确命题的编号)

【答案】①②
【解析】解:∵圆:(x+cosθ)2+(y﹣sinθ)2=1恒过定点O(0,0) 直线l:y=kx也恒过定点O(0,0),
∴①正确;
圆心M(﹣cosθ,sinθ)
圆心到直线的距离d= = ≤1,
∴对任意实数k和θ,直线l和圆M的关系是相交或者相切,
∴②正确,③④都错误.
所以答案是:①②.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网