题目内容

【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E 、F ,连结BD 、DP ,BD与CF相交于点H. 给出下列结论:①△BDE ∽△DPE;② ;③DP 2=PH ·PB; ④ . 其中正确的是( ).

A.①②③④
B.①②④
C.②③④
D.①③④

【答案】D
【解析】解:∵△BPC是等边三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,

∴∠CPD=∠CDP=75°,

∴∠PDE=15°,

∵∠PBD=∠PBC-∠HBC=60°-45°=15°,

∴∠EBD=∠EDP,

∵∠DEP=∠DEB,

∴△BDE∽△DPE;

故①正确;

∵PC=CD,∠PCD=30°,

∴∠PDC=75°,

∴∠FDP=15°,

∵∠DBA=45°,

∴∠PBD=15°,

∴∠FDP=∠PBD,

∵∠DFP=∠BPC=60°,

∴△DFP∽△BPH,

故②错误;

∵∠PDH=∠PCD=30°,

∵∠DPH=∠DPC,

∴△DPH∽△CDP,

∴PD2=PHCD,

∵PB=CD,

∴PD2=PHPB,

故③正确;

如图,过P作PM⊥CD,PN⊥BC,

设正方形ABCD的边长是4,△BPC为正三角形,

∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,

∴∠PCD=30°

∴CM=PN=PBsin60°=4× ,PM=PCsin30°=2,

∵DE∥PM,

∴∠EDP=∠DPM,

∴∠DBE=∠DPM,

故④正确;

答案为:D。

①利用等边三角形的性质以及正方形的性质得出∠EPD=∠EDB=45°,再直接利用相似三角形的判定方法得出答案;
②利用等边三角形的性质结合正方形的性质证出△DFP∽△BPH,进而得出
③利用相似三角形的判定与性质结合锐角三角函数关系得出答案;
④利用三角函数可转化 tan ∠ D B E=tan∠DPM,进而得出结果.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网