题目内容

如图,在梯形ABCD中,AB∥CD,AD=BC,点E、F、G、H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是


  1. A.
    ∠HGF=∠GHE
  2. B.
    ∠GHE=∠HEF
  3. C.
    ∠HEF=∠EFG
  4. D.
    ∠HGF=∠HEF
D
分析:利用三角形中位线定理证明四边形HEFG是平行四边形,进而可以得到结论.
解答:解:连接BD,
∵E、F、G、H分别是AB,BC,CD,DA的中点,
∴HE=GF=BD,HE∥GF,
∴四边形HEFG是平行四边形,
∴∠HGF=∠HEF,
故选D.
点评:本题考查了等腰梯形的性质及三角形的中位线定理,解题的关键是利用中位线定理证得四边形为平行四边形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网