题目内容
【题目】某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量y(kg)随销售单价x(元/kg)的变化而变化,具体变化规律如表所示:
销售单价x(元/kg) | … | 70 | 75 | 80 | 85 | 90 | … |
月销售量y(kg) | … | 100 | 90 | 80 | 70 | 60 | … |
设该绿茶的月销售利润为w(元)(销售利润=单价×销售量﹣成本)
(1)请根据上表,写出y与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求w与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,w的值最大?
(3)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修投资的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?
【答案】(1)y=﹣2x+240;(2)w=﹣2x2+340x﹣12000,当x=85时,w最大=2450;(3)当销售单价为75≤x≤80元时,在全部收回投资的基础上使第二个月的利润不低于1700元.
【解析】
(1)设y=kx+b,待定系数法求解即可得;
(2)根据:“总利润=每千克利润×销售量”列出函数关系式,配方可得其最值情况;
(3)由(2)知,第二个月利润需达到1700+550即W=2250才能满足题目条件,解方程可得x的值,根据二次函数性质可得x的取值范围.
(1)将(70,100),(75,90)代入上式,
得:
解得:,
则y=﹣2x+240,
(2)w=(x﹣50)y
=(x﹣50)(﹣2x+240)
=﹣2x2+340x﹣12000
=﹣2(x﹣85)2+2450,
当x=85时,w最大=2450;
(3)由(2)知,第1个月还有3000﹣2450=550元的投资成本没有收回.
则要想在全部收投资的基础上使第二个月的利润达到1700元,
即w=2250才可以,
可得方程:﹣2(x﹣85)2+2450=2250
解得:x1=75,x2=95
根据题意x2=95不合题意,应舍去,
当x=80时,y=2400,
∵﹣2<0,
∴当x<85时,w随x的增大而增大,
当w≥2250,且销售单价不高于80时,75≤x≤80.
答:当销售单价为75≤x≤80元时,在全部收回投资的基础上使第二个月的利润不低于1700元.
【题目】吴京同学根据学习函数的经验,对一个新函数的图象和性质进行了如下探究,请帮他把探究过程补充完整.
(1)该函数的自变量的取值范围是______.
(2)列表:
… | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … | |||
… | … |
表中________,_______.
(3)描点、连线
在下面的格点图中,建立适当的平面直角坐标系中,描出上表中各对对应值为坐标的点(其中为横坐标,为纵坐标),并根据描出的点画出该函数的图象:
(4)观察所画出的函数图象,写出该函数的两条性质:
①_______________________________________;
②_______________________________________.
(5)函数与直线的交点有2个,那么的取值范围_________.