题目内容
【题目】在研究位似问题时,甲、乙同学的说法如下:
甲:如图①,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为(0,2).
图① 图②
乙:如图②,正方形网格中,每个小正方形的边长是1个单位长度,以点C为位似中心,在网格中画△A1B1C1,使△A1B1C1与△ABC位似,且△A1B1C1与△ABC的位似比为2:1,则点B1的坐标为(4,0).
对于两人的观点,下列说法正确的是( )
A. 两人都对 B. 两人都不对 C. 甲对乙不对 D. 甲不对乙对
【答案】A
【解析】解:∵矩形ABCD和矩形EFGO 是位似图形,∴B和F是对应点,设直线BF为y=kx+b,则,解得: ,∴.∵位似中心是直线BF和CG的交点,∴x=0,∴y=2,∴位似中心为P(0,2),故甲正确;
由图可知,点B的坐标为(3,﹣2),以点C为位似中心,在网格中画△A1B1C1,使△A1B1C1与△ABC位似,且△A1B1C1与△ABC的位似比为2:1,则点B1的坐标为(5,0),故乙正确.
故选A.
练习册系列答案
相关题目