题目内容

【题目】为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价l80元,售价320元;乙种服装每件进价l50元,售价280元.

(1)若该专卖店同时购进甲、乙两种服装共200件,恰好用去32400元,求购进甲、乙两种服装各多少件?

(2)该专卖店为使甲、乙两种服装共200件的总利润(利润=售价一进价)不少于26700元, 且不超过26800元,则该专卖店有几种进货方案?

(3)在(2)的条件下,专卖店准备在5月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变.那么该专卖店要获得最大利润应如何进货?

【答案】(1)购进甲、乙两种服装80件、120件(2)共有11种方案(3)购进甲种服装70件,乙种服装130件

【解析】解:(1)设购进甲种服装x件,则乙种服装是(200-x)件,

根据题意得:180x+150(200-x)=32400,

解得:x=80,200-x=200-80=120。

购进甲、乙两种服装80件、120件。

(2)设购进甲种服装y件,则乙种服装是(200-y)件,根据题意得:

,解得:70≤y≤80。

y是正整数,共有11种方案。

(3)设总利润为W元,则W=(140-a)y+130(200-y),即w=(10-a)y+26000。

当0<a<10时,10-a>0,W随y增大而增大,

当y=80时,W有最大值,此时购进甲种服装80件,乙种服装120件。

当a=10时,(2)中所有方案获利相同,所以按哪种方案进货都可以。

当10<a<20时,10-a<0,W随y增大而减小,

当y=70时,W有最大值,此时购进甲种服装70件,乙种服装130件。

(1)设购进甲种服装x件,则乙种服装是(200x)件,根据两种服装共用去32400元,即可列出方程,从而求解

(2)设购进甲种服装y件,则乙种服装是(200y)件,根据总利润(利润=售价-进价)不少于26700元,且不超过26800元,即可得到一个关于y的不等式组,解不等式组即可求得y的范围,再根据y是正整数整数即可求解

(3)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网