题目内容
【题目】某烟机零件加工车间,甲组工人加工零件,工作中有一次停产检修机器,然后继续加工.由于任务紧急,乙组工人加入,与甲组工人一起生产零件.两组各自加工零件的数量y(个)与甲组工人加工时间t(时)之间的函数图象如图所示.
(l)求乙组加工零件的数量y与时间t之间的函数关系式.
(2)求甲组加工零件总量a.
【答案】(1) y=120x﹣600;(2)280个.
【解析】分析:(1)由图象可知,乙组加工零件的数量y与时间t之间是一次函数的关系,函数图象过点(5,0),(8,360),用待定系数法求y与t之间的函数关系式;(2)把x=7代入(1)所求的函数关系式求出x=7时,y的值,即可得到甲在4时到8时之间每小时加工的零件数量,由此求出8小时时加工的零件数量.
详解:解:(1)当0≤t<5时,y=0,
当5≤t≤8时,设y与时间t之间的函数关系式为:y=kx+b,
将(5,0),(8,360)代入得:,解得:,
∴y与时间t之间的函数关系式为:y=120x﹣600;
(2)∵当t=7时,y=120×7﹣600=240,
4时到8时之间每小时加工的零件数量为(240﹣120)÷(7﹣4)=40.
∴a=120+40×(8﹣4)=280(个).
【题目】山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
A,B两种型号车的进货和销售价格如下表:
A型车 | B型车 | |
进货价格(元) | 1 100 | 1 400 |
销售价格(元) | 今年的销售价格 | 2 000 |
(1)今年A型车每辆售价多少元?(用列方程的方法解答)
(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
【题目】如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.
小新根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小新的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y(cm) | 0 | 1.0 | 2.0 | 3.0 | 2.7 | 2.7 | m | 3.6 |
经测量m的值是(保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.