题目内容

【题目】如图,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4 cm,则EF+CF的长为cm.

【答案】5
【解析】解:∵AE平分∠BAD, ∴∠DAE=∠BAE;
又∵AD∥BC,
∴∠BEA=∠DAE=∠BAE,
∴AB=BE=6cm,
∴EC=9﹣6=3(cm),
∵BG⊥AE,垂足为G,
∴AE=2AG.
在Rt△ABG中,∵∠AGB=90°,AB=6cm,BG=4 cm,
∴AG= =2(cm),
∴AE=2AG=4cm;
∵EC∥AD,
= = = =
= =
解得:EF=2(cm),FC=3(cm),
∴EF+CF的长为5cm.
所以答案是:5.

【考点精析】本题主要考查了勾股定理的概念和平行四边形的性质的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网