题目内容
【题目】如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.
(1)证明:DE为⊙O的切线;
(2)连接OE,若BC=4,求△OEC的面积.
【答案】
(1)证明:连接OD,CD,
∵BC为⊙O直径,
∴∠BDC=90°,
即CD⊥AB,
∵△ABC是等腰三角形,
∴AD=BD,
∵OB=OC,
∴OD是△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∵D点在⊙O上,
∴DE为⊙O的切线;
(2)解:∵∠A=∠B=30°,BC=4,
∴CD= BC=2,BD=BCcos30°=2 ,
∴AD=BD=2 ,AB=2BD=4 ,
∴S△ABC= ABCD= ×4 ×2=4 ,
∵DE⊥AC,
∴DE= AD= ×2 = ,
AE=ADcos30°=3,
∴S△ODE= ODDE= ×2× = ,
S△ADE= AEDE= × ×3= ,
∵S△BOD= S△BCD= × S△ABC= ×4 = ,
∴S△OEC=S△ABC﹣S△BOD﹣S△ODE﹣S△ADE=4 ﹣ ﹣ ﹣ = .
【解析】(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.
练习册系列答案
相关题目