题目内容
【题目】在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏. 小明画出树状图如图所示:
小华列出表格如下:
第一次 | 1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | ① | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为;
(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?
【答案】
(1)不放回
(2)(3,2)
(3)理由如下:
∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,
∴概率为: = ;
∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,
∴概率为: = ,
∵ >
∴小明获胜的可能性大
【解析】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现, ∴小明的实验是一个不放回实验,
2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,
所以答案是:不放回;(3,2).
【考点精析】解答此题的关键在于理解列表法与树状图法的相关知识,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
练习册系列答案
相关题目