题目内容
【题目】(1)如图1,在△ABC中,AD、BD分别平分∠BAC和∠ABC,AD、BD相交于点D,过点D作DE∥AC,DF∥BC分别交AB于点E、F.
①若∠EDF=80°,则∠ADB=________°;
②若∠C=则∠ADB=________°.
(2)如图2,在△ABC中,若∠BAD=∠BAC,∠ABD=∠ABC,AD、BD相交于点D,过点D作DE∥AC,DF∥BC分别交AB于点E、F,若∠EDF=60°,则∠ADB=_______°;
(3)如图3,在△ABC中,AD、BD分别是∠BAC、∠ABC的等分线,AD、BD相交于点D,若∠BAD=∠BAC,∠ABD=∠ABC,过点D作DE∥AC,DF∥BC分别交AB于点E、F,若∠EDF=,则∠ADB的度数是多少?(用表示)
【答案】(1)130°、(90-0.5x)(2)140°;(3)
【解析】
(1)①由∠EDF=80°及DE∥AC,DF∥BC,可求∠BAC+∠ABC =100°;再结合角平分线的定义及三角形的内角和即可求出∠ADB的值;②由角平分线的定义及三角形的内角和求解即可;
(2)参考(1)①的步骤求解即可;
(3)参考(2)的步骤求解即可.
(1)①∵∠EDF=80°,
∴∠DEF+∠DFE=100°.
∵DE∥AC,DF∥BC,
∴∠BAC=∠DEF,∠ABC=∠DFE,
∴∠BAC+∠ABC =100°.
∵AD、BD分别平分∠BAC和∠ABC,
∴∠BAD=∠BAC, ∠ABD=∠ABC,
∴∠BAD+∠ABD=(∠BAC+∠ABC)=50°,
∴∠ADC=180°-50°=130°;
②∵∠C=,
∴∠BAC+∠ABC =180°-,
∵AD、BD分别平分∠BAC和∠ABC,
∴∠BAD=∠BAC, ∠ABD=∠ABC,
∴∠BAD+∠ABD=(∠BAC+∠ABC)=(∠180°-)=(90-0.5x)°;
(2)∵∠EDF=60°,
∴∠DEF+∠DFE=120°.
∵DE∥AC,DF∥BC,
∴∠BAC=∠DEF,∠ABC=∠DFE,
∴∠BAC+∠ABC =120°.
∵∠BAD=∠BAC,∠ABD=∠ABC,
∴∠BAD+∠ABD= (∠BAC+∠ABC)=40°,
∴∠ADC=180°-40°=140°;
(3)∵∠EDF=,
∴∠DEF+∠DFE=120°.
∵DE∥AC,DF∥BC,
∴∠BAC=∠DEF,∠ABC=∠DFE,
∴∠BAC+∠ABC =(180-x)°.
∵BAD=∠BAC,∠ABD=∠ABC,
∴∠BAD+∠ABD= (180-x)°,
∴∠ADC=180°-.