题目内容
【题目】“爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.
(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?
(2)现要将这些帐篷用卡车一次性运送到该地震灾区的两地,由于两市通住两地道路的路况不同,卡车的运载量也不同.已知运送帐篷每千顶所需的车辆数、两地所急需的帐篷数如下表:
地 | 地 | ||
每千顶帐篷 所需车辆数 | 甲市 | 4 | 7 |
乙市 | 3 | 5 | |
所急需帐篷数(单位:千顶) | 9 | 5 |
请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数.
【答案】(1)设总厂原来每周制作帐篷千顶,分厂原来每周制作帐篷千顶.
由题意,得
解得所以(千顶),(千顶).
答:在赶制帐篷的一周内,总厂、分厂各生产帐篷8千顶、6千顶.
(2)设从(甲市)总厂调配千顶帐篷到灾区的地,则总厂调配到灾区地的帐篷为千顶,(乙市)分厂调配到灾区两地的帐篷分别为千顶.
甲、乙两市所需运送帐篷的车辆总数为辆.
由题意,得.
即.
因为,所以随的增大而减小.
所以,当时,有最小值60.
答:从总厂运送到灾区地帐篷8千顶,从分厂运送到灾区两地帐篷分别为1千顶、5千顶时所用车辆最少,最少的车辆为60辆.
【解析】(1)本题中的两个等量关系:①总厂原计划+分厂原计划=9,②总厂赶制+分厂赶制=14;(2)运货量问题中的最小值,一般选取有代表性的变量作为自变量,利用它表示出问题中的多个变量,然后得到反映实际问题的一次函数,利用一次函数的增减性即可得到问题的答案.
【题目】“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:
村庄 | 清理养鱼网箱人数/人 | 清理捕鱼网箱人数/人 | 总支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;
(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
【题目】某蔬菜专业户试种植了一种紧俏蔬菜(都能卖出),其中每千克的成本在9元/千克的基础上,还有一些上浮.若浮动价(元/)与需求量(千克)成反比,比例系数为30.市场连续四天调查发现,蔬菜售价(元/)与市场需求量有如下关系:
需求量 | 50 | 40 | 30 | 20 |
蔬菜售价(元/) | 10 | 15 | 20 | 25 |
(1)直接写出每千克的成本与需求量的关系式_________;
(2)求与的关系式;
(3)当某天的利润率达到时,求这天的需求量;
(4)求需求量是多少千克时,利润达到最大值,最大值是多少?