题目内容

(本小题满分8分)
如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°.

(1)求图中阴影部分的面积;

 

 
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.

(3) 试判断⊙O中其余部分能否给(2)中的圆锥做两个底面。
解:(1)法一:过O作OE⊥AB于E,则AE=AB=2.····················· 1分
  
在RtAEO中,∠BAC=30°,cos30°=
∴OA===4. …………………………2分
又∵OA=OB,∴∠ABO=30°.∴∠BOC=60°.∵AC⊥BD,∴
∴∠COD =∠BOC=60°.∴∠BOD=120°.······················································· 3分
∴S阴影==.································································· 4分
法二:连结AD.∵AC⊥BD,AC是直径,

 

 
∴AC垂直平分BD.     ……………………1分

∴AB=AD,BF=FD,. ∴∠BAD=2∠BAC=60°,
∴∠BOD=120°.        ……………………2分
∵BF=AB=2,sin60°=,AF=AB·sin60°=4×=6.
∴OB2=BF2+OF2.即.∴OB=4.   ···························· 3分
∴S阴影=S=.      ········································································ 4分
法三:连结BC.∵AC为⊙O的直径,∴∠ABC=90°.……………………1分

∵AB=4,∴.        ……………………2分
∵∠A=30°, AC⊥BD,∴∠BOC=60°,∴∠BOD=120°.
∴S阴影=π·OA2=×42·π=.……………………4分
以下同法一.
(2)设圆锥的底面圆的半径为r,则周长为2πr,
.  ∴.       ···················································· 6分
(3)<8-12,故能得到两个这样的底面。……………………8分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网