题目内容
(本小题满分8分)
如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.(3) 试判断⊙O中其余部分能否给(2)中的圆锥做两个底面。
如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°.
(1)求图中阴影部分的面积;
|
解:(1)法一:过O作OE⊥AB于E,则AE=AB=2.····················· 1分
在RtAEO中,∠BAC=30°,cos30°=.
∴OA===4. …………………………2分
又∵OA=OB,∴∠ABO=30°.∴∠BOC=60°.∵AC⊥BD,∴.
∴∠COD =∠BOC=60°.∴∠BOD=120°.······················································· 3分
∴S阴影==.································································· 4分
法二:连结AD.∵AC⊥BD,AC是直径,
∴AC垂直平分BD. ……………………1分∴AB=AD,BF=FD,. ∴∠BAD=2∠BAC=60°,
∴∠BOD=120°. ……………………2分
∵BF=AB=2,sin60°=,AF=AB·sin60°=4×=6.
∴OB2=BF2+OF2.即.∴OB=4. ···························· 3分
∴S阴影=S圆=. ········································································ 4分
法三:连结BC.∵AC为⊙O的直径,∴∠ABC=90°.……………………1分
∵AB=4,∴. ……………………2分
∵∠A=30°, AC⊥BD,∴∠BOC=60°,∴∠BOD=120°.
∴S阴影=π·OA2=×42·π=.……………………4分
以下同法一.
(2)设圆锥的底面圆的半径为r,则周长为2πr,
∴. ∴. ···················································· 6分
(3)<8-12,故能得到两个这样的底面。……………………8分
在RtAEO中,∠BAC=30°,cos30°=.
∴OA===4. …………………………2分
又∵OA=OB,∴∠ABO=30°.∴∠BOC=60°.∵AC⊥BD,∴.
∴∠COD =∠BOC=60°.∴∠BOD=120°.······················································· 3分
∴S阴影==.································································· 4分
法二:连结AD.∵AC⊥BD,AC是直径,
|
∴∠BOD=120°. ……………………2分
∵BF=AB=2,sin60°=,AF=AB·sin60°=4×=6.
∴OB2=BF2+OF2.即.∴OB=4. ···························· 3分
∴S阴影=S圆=. ········································································ 4分
法三:连结BC.∵AC为⊙O的直径,∴∠ABC=90°.……………………1分
∵AB=4,∴. ……………………2分
∵∠A=30°, AC⊥BD,∴∠BOC=60°,∴∠BOD=120°.
∴S阴影=π·OA2=×42·π=.……………………4分
以下同法一.
(2)设圆锥的底面圆的半径为r,则周长为2πr,
∴. ∴. ···················································· 6分
(3)<8-12,故能得到两个这样的底面。……………………8分
略
练习册系列答案
相关题目