题目内容
【题目】如图,AB是⊙O的直径,C是⊙O上一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且AC平分∠BAD.
(1)求证:直线MN是⊙O的切线;
(2)若CD=4,AC=5,求⊙O的直径.
【答案】
(1)证明:连接OC,
∵OA=OC,∴∠OAC=∠OCA,
∵AC平分∠BAD,∴∠CAB=∠DAC,
∴∠OCA=∠DAC,
∴OC∥AD.
∵AD⊥MN,∴OC⊥MN.
∵OC为半径,∴MN是⊙O切线.
(2)解:∵∠ADC=90°,AC=5,DC=4,
∴AD=3,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ADC=∠ACB,
又∵∠CAB=∠DAC,
∴△ADC∽△ACB,
∴ = ,
∴ = ,
解得:AB= ,
即⊙O的直径长为 .
【解析】(1)直接利用角平分线的性质结合等腰三角形的性质得出OC⊥MN,进而得出答案;(2)利用相似三角形的判定与性质得出AB的长.
练习册系列答案
相关题目