题目内容

【题目】如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).

【答案】解:过B点作BE⊥l1 , 交l1于E,CD于F,l2于G.
在Rt△ABE中,BE=ABsin30°=20× =10km,
在Rt△BCF中,BF=BC÷cos30°=10÷ = km,
CF=BFsin30°= × = km,
DF=CD﹣CF=(30﹣ )km,
在Rt△DFG中,FG=DFsin30°=(30﹣ )× =(15﹣ )km,
∴EG=BE+BF+FG=(25+5 )km.
故两高速公路间的距离为(25+5 )km.
【解析】过B点作BE⊥l1 , 交l1于E,CD于F,l2于G.在Rt△ABE中,根据三角函数求得BE,在Rt△BCF中,根据三角函数求得BF,在Rt△DFG中,根据三角函数求得FG,再根据EG=BE+BF+FG即可求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网