题目内容

随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?
(1)设y1=kx,由图①所示,函数y1=kx的图象过(1,2),
所以2=k•1,k=2,
故利润y1关于投资量x的函数关系式是y1=2x(x≥0);
∵该抛物线的顶点是原点,
∴设y2=ax2
由图②所示,函数y2=ax2的图象过(2,2),
∴2=a•22a=
1
2

故利润y2关于投资量x的函数关系式是:y=
1
2
x2(x≥0);

(2)设这位专业户投入种植花卉x万元(0≤x≤8),则投入种植树木(8-x)万元,他获得的利润是z万元,根据题意,
得z=2(8-x)+
1
2
x2=
1
2
x2-2x+16=
1
2
(x-2)2+14,
当x=2时,z的最小值是14,
∵0≤x≤8,
∴-2≤x-2≤6,
∴(x-2)2≤36,
1
2
(x-2)2≤18,
1
2
(x-2)2+14≤18+14=32,
即z≤32,此时x=8,
答:当x=8时,z的最大值是32.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网