题目内容

如图,已知抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.
(3)P是直线x=1右侧的该抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
(1)∵该抛物线过点C(0,-2),
∴可设该抛物线的解析式为y=ax2+bx-2.
将A(4,0),B(1,0)代入y=ax2+bx-2,
16a+4b-2=0
a+b-2=0

解得:
a=-
1
2
b=
5
2

∴该抛物线的解析式为y=-
1
2
x2+
5
2
x-2.

(2)存在.
如图1,设D点的横坐标为t(0<t<4),则D点的纵坐标为-
1
2
t2+
5
2
t-2.
过D作y轴的平行线交AC于E.
设直线AC的解析式为:y=mx+n,
n=-2
4m+n=0

解得:
m=
1
2
n=-2

由题意可求得直线AC的解析式为y=
1
2
x-2.
∴E点的坐标为(t,
1
2
t-2).
∴DE=-
1
2
t2+
5
2
t-2-(
1
2
t-2)=-
1
2
t2+2t.
∴S△DCA=S△CDE+S△ADE=
1
2
×DE×OA=
1
2
×(-
1
2
t2+2t)×4=-t2+4t=-(t-2)2+4.
∴当t=2时,S最大=4.
∴当D(2,1),△DAC面积的最大值为4.

(3)存在.
如图2,设P(m,-
1
2
m2+
5
2
m-2),则m>1.
Ⅰ.当1<m<4时,
则AM=4-m,PM=-
1
2
m2+
5
2
m-2.
又∵∠COA=∠PMA=90°,
∴①当
AM
PM
=
AO
CO
=
2
1
时,△APM△ACO.
∴4-m=2(-
1
2
m2+
5
2
m-2),解得m1=2,m2=4(舍去).
∴P1(2,1).
②当
AM
PM
=
CO
AO
=
1
2
时,△APM△CAO.
∴2(4-m)=-
1
2
m2+
5
2
m-2,解得m3=4,m4=5(均不合题意,舍去).
∴当1<m<4时,P1(2,1).
Ⅱ.当m>4时,同理可求P2(5,-2).
综上所述,符合条件的点P为P1(2,1)和P2(5,-2).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网