题目内容
【题目】已知:是经过点A的一条直线,点C是直线左侧的一个动点,且满足,连接,将线段绕点C顺时针旋转60°,得到线段,在直线上取一点B,使.
(1)若点C位置如图1所示.
①依据题意补全图1;
②求证:;
(2)连接,写出一个的值,使得对于任意一点C,总有,并证明.
【答案】(1)①图见解析;②证明见解析;(2)时,对于任意一点C,总有;证明见解析.
【解析】
(1)①在AC右侧作等边三角形ACD,即可得线段,在作的外接圆交直线MN与B,连接DB即可补全图形;
②根据四边形内角和等于360°结合,即可得出,由同角的补角相等即可证明结论;
(2)连接,在直线上截取,连接,可得,进而是等边三角形,即得.
解:(1)① 补全图形,如图:
②证明:∵
∴
∵
∴
在四边形中,
∵
∴
(2)时,对于任意一点C,总有
证明:连接,在直线上截取,连接,
∵
∴
∴
∴
∴
∴是等边三角形.
∴.
练习册系列答案
相关题目