题目内容

【题目】如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.

(1)求抛物线对应的函数关系式;

(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.

当t为何值时,四边形OMPQ为矩形;

②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

【答案】解:(1)根据题意,设抛物线的解析式为:

点A(1,0),B(0,3)在抛物线上,

,解得:

抛物线的解析式为:

(2)①∵四边形OMPQ为矩形,

OM=PQ,即,整理得:t2+5t﹣3=0,

解得<0,舍去)。

秒时,四边形OMPQ为矩形

RtAOB中,OA=1,OB=3,tanA=3

AON为等腰三角形,有三种情况:

(I)若ON=AN,如答图1所示

过点N作NDOA于点D,

则D为OA中点,OD=OA=

t=

(II)若ON=OA,如答图2所示

过点N作NDOA于点D,

设AD=x,则ND=ADtanA=3x,OD=OA﹣AD=1﹣x,

在RtNOD中,由勾股定理得:OD2+ND2=ON2

,解得x1=,x2=0(舍去)

x=,OD=1﹣x=

t=

(III)若OA=AN,如答图3所示

过点N作NDOA于点D,

设AD=x,则ND=ADtanA=3x,

在RtAND中,由勾股定理得:ND2+AD2=AN2

,解得x1=,x2=(舍去)

x=OD=1﹣x=1﹣

t=1﹣

综上所述,当t为秒、秒,1﹣秒时,AON为等腰三角形

解析(1)用待定系数法求出抛物线的顶点式解析式

(2)当四边形OMPQ为矩形时,满足条件OM=PQ,据此列一元二次方程求解

②△AON为等腰三角形时,可能存在三种情形,分类讨论,逐一计算

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网