题目内容
【题目】如图所示,四边形ABCD是菱形,边BC在x轴上,点A(0,4),点B(3,0),双曲线y=与直线BD交于点D、点E.
(1)求k的值;
(2)求直线BD的解析式;
(3)求△CDE的面积.
【答案】(1)20;(2)y=2x﹣6;(3)35.
【解析】
(1)先求出D点的坐标,再代入求出即可;
(2)设直线BD的解析式为y=ax+b,把B(3,0),D(5,4)代入得出方程组,求出方程组的解即可;
(3)求出E点的坐标,分别求出△CBD和△CBE的面积,即可得出答案.
(1)∵点A(0,4),点B(3,0),
∴OA=4,OB=3,
由勾股定理得:AB=5,
过D作DF⊥x轴于F,则∠AOB=∠DFC=90°,
∵四边形ABCD是菱形,
∴AB=DC=CD=AD=5,AD∥BC,
∴AO=DF=4,
∵AD∥BC,AO⊥OB,DF⊥x轴,
∴∠DAO=∠AOF=∠DFO=90°,
∴四边形AOFD是矩形,
∴AD=OF=5,
∴D点的坐标为(5,4),
代入y=得:k=5×4=20;
(2)设直线BD的解析式为y=ax+b,
把B(3,0),D(5,4)代入得:,
解得:a=2,b=﹣6,
所以直线BD的解析式是y=2x﹣6;
(3)由(1)知:k=20,
所以y=,
解方程组得:,,
∵D点的坐标为(5,4),
∴E点的坐标为(2,10),
∵BC=5,
∴△CDE的面积S=S△CDB+S△CBE=+=35.
【题目】本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:
地点 | 票价 |
历史博物馆 | 10元/人 |
民俗展览馆 | 20元/人 |
(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?
(2)若学生都去参观历史博物馆,则能节省票款多少元?