题目内容
【题目】数学课上,李老师出示了如下框中的题目.
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论:当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE DB(填“>”,“<”或“=”).
(2)特例启发,解决问题:解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)
(3)拓展结论,设计新题:在等边三角形ABC中,点E在AB的延长线上,点D在直线BC上,且ED=EC.若△ABC的边长为2,AE=3,求CD的长.(请画出符合题意的图形,并直接写出结果)
【答案】(1)=;(2)=,理由见解析;(3)5
【解析】
(1)先证明BD=BE即可解决问题;
(2)作EF∥BC交AC于F.证得△DBE≌△EFC,得出BD=EF=AE,所以BD=AE;
(3)作EF∥BC交AC的延长线于F,证出△EBD≌△CFE,可得BD=EF=AE=3,CD=BD+BC=3+2=5.
解:(1)如图1中,
∵△ABC是等边三角形,AE=EB,
∴∠BCE=∠ACE=30°,∠ABC=60°,
∵ED=EC,
∴∠D=∠ECD=30°,
∵∠EBC=∠D+∠BED,
∴∠D=∠BED=30°,
∴BD=BE=AE.
故答案为:=;
(2)结论:AE=BD.理由如下:
如图2中,作EF∥BC交AC于F.
∵∠AEF=∠B=60°,∠A=60°,
∴△AEF是等边三角形,
∴AE=EF=AF,∠AFE=60°,
∴∠EFC=∠DBE=120°,
∵AB=AC,AE=AF,
∴BE=CF,
∵∠D=∠ECB=∠CEF,且∠DBE=∠EFC,BE=CF,
∴△DBE≌△EFC(AAS),
∴BD=EF=AE,
∴BD=AE,
故答案为:=;
(3)如图3中,当E在AB的延长线上时,作EF∥BC交AC的延长线于F,
∵EF∥BC,
∴∠BCE=∠CEF,∠ABC=∠AEF=60°,∠ACB=∠AFE=60°,
∴△AEF是等边三角形,
∴AE=EF=AF=3,
∴BE=CF,
∵DE=CE,
∴∠EDC=∠DCE,
∴∠EDC=∠CEF,且BE=CF,∠F=∠ABC=∠DBE=60°,
∴△DBE≌△EFC(AAS)
∴BD=EF=3,
∴CD=DB+BC=3+2=5.