题目内容
【题目】如图,在正方形ABCD中,E为BC边上一点,连接AE,作AE的垂直平分线交AB于G,交CD于F.若DF=2,BG=4,则GF的长为___________
【答案】3
【解析】如图,连接GE,作GH⊥CD于H.则四边形AGHD是矩形,设AG=DH=x,则FH=x-2.首先证明△ABE≌△GHF,推出BE=FH=x-2,在Rt△BGE中,根据GE=BG+BE,构建方程求出x即可解决问题.
如图,连接GE,作GH⊥CD于H.则四边形AGHD是矩形,设AG=DH=x,则FH=x2.
∵GF垂直平分AE,四边形ABCD是正方形,
∴∠ABE=∠GHF=90°,AB=AD=GH,AG=GE=x,
∵∠BAE+∠AGF=90°,∠AGF+∠FGH=90°,
∴∠BAE=∠FGH,
∴△ABE≌△GHF,
∴BE=FH=x2,AE=GF
在Rt△BGE中,∵GE=BG+BE,
∴x=4+(x2) ,
∴x=5,
∴AB=9,BE=3,
在Rt△ABE中,AE=,即GF=.
故答案为:.
练习册系列答案
相关题目