题目内容
【题目】在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.
特别地,当点P′与圆心C重合时,规定CP′=0
(1)当⊙O的半径为1时.
①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;
②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;
(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.
【答案】
(1)
解:当⊙O的半径为1时.
①点M(2,1)关于⊙O的反称点不存在;
N(,0)关于⊙O的反称点存在,反称点N′(,0);
T(1,)关于⊙O的反称点存在,反称点T′(0,0);
②∵OP≤2r=2,OP2≤4,设P(x,﹣x+2),
∴OP2=x2+(﹣x+2)2=2x2﹣4x+4≤4,
∴2x2﹣4x≤0,
x(x﹣2)≤0,
∴0≤x≤2.
当x=2时,P(2,0),P′(0,0)不符合题意;
当x=0时,P(0,2),P′(0,0)不符合题意;
∴0<x<2;
(2)
解:∵直线y=﹣x+2与x轴、y轴分别交于点A,B,
∴A(6,0),B(0,2),
∴=,
∴∠OBA=60°,∠OAB=30°.
设C(x,0).
①当C在OA上时,作CH⊥AB于H,
则CH≤CP≤2r=2,
所以AC≤2,
C点横坐标x≥2(当x=2时,C点坐标(2,0),H点的反称点H′(2,0)在圆的内部);
②当C在A点右侧时,
C到线段AB的距离为AC长,AC最大值为8,
所以C点横坐标x≤10.
综上所述,圆心C的横坐标的取值范围是2≤x≤8.
【解析】(1)①根据反称点的定义,可得当⊙O的半径为1时,点M(2,1)关于⊙O的反称点不存在;N(,0)关于⊙O的反称点存在,反称点N′(,0);T(1,)关于⊙O的反称点存在,反称点T′(0,0);
②由OP≤2r=2,得出OP2≤4,设P(x,﹣x+2),由勾股定理得出OP2=x2+(﹣x+2)2=2x2﹣4x+4≤4,解不等式得出0≤x≤2.再分别将x=2与0代入检验即可;
(2)先由y=﹣x+2,求出A(6,0),B(0,2),则=,∠OBA=60°,∠OAB=30°.再设C(x,0),分两种情况进行讨论:①C在OA上;②C在A点右侧.
此题考查了圆的综合应用,涉及知识点有勾股定理,“反对称点”的定义与应用.
【题目】为了迎接郑州市第二届“市长杯”青少年校园足球超级联赛,某学校组织了一次体育知识竞赛.每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级得分依次记为100分、90分、80分、70分.学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示.
(1)把一班竞赛成绩统计图补充完整;
(2)写出下表中a、b、c的值:
平均数(分) | 中位数(分) | 众数(分) | 方差 | |
一班 | a | b | 90 | 106.24 |
二班 | 87.6 | 80 | c | 138.24 |
(3)根据(2)的结果,请你对这次竞赛成绩的结果进行分析.
【题目】LED灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中,人们更倾向于LED灯的使用,某校数学兴趣小组为了解LED灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:
LED灯泡 | 普通白炽灯泡 | |
进价(元) | 45 | 25 |
标价(元) | 60 | 30 |
(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?