题目内容

【题目】在直角坐标系中,设x轴为直线l,函数y=﹣ x,y= x的图象分别是直线l1 , l2 , 圆P(以点P为圆心,1为半径)与直线l,l1 , l2中的两条相切.例如( ,1)是其中一个圆P的圆心坐标.
(1)写出其余满足条件的圆P的圆心坐标;
(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.

【答案】
(1)解:①若圆P与直线l和l2都相切,

当点P在第四象限时,

过点P作PH⊥x轴,垂足为H,连接OP,如图1所示.

设y= x的图象与x轴的夹角为α.

当x=1时,y=

∴tanα=

∴α=60°.

∴由切线长定理得:∠POH= ×(180°﹣60°)=60°.

∵PH=1,

∴tan∠POH= = =

∴OH=

∴点P的坐标为( ,﹣1).

同理可得:

当点P在第二象限时,点P的坐标为(﹣ ,1);

当点P在第三象限时,点P的坐标为(﹣ ,﹣1);

②若圆P与直线l和l1都相切,如图2所示.

同理可得:当点P在第一象限时,点P的坐标为( ,1);

当点P在第二象限时,点P的坐标为(﹣ ,1);

当点P在第三象限时,点P的坐标为(﹣ ,﹣1);

当点P在第四象限时,点P的坐标为( ,﹣1).

③若圆P与直线l1和l2都相切,如图3所示.

同理可得:

当点P在x轴的正半轴上时,点P的坐标为( ,0);

当点P在x轴的负半轴上时,点P的坐标为(﹣ ,0);

当点P在y轴的正半轴上时,点P的坐标为(0,2);

当点P在y轴的负半轴上时,点P的坐标为(0,﹣2).

综上所述:其余满足条件的圆P的圆心坐标有:

,﹣1)、(﹣ ,1)、(﹣ ,﹣1)、

,1)、(﹣ ,1)、(﹣ ,﹣1)、( ,﹣1)、

,0)、(﹣ ,0)、(0,2)、(0,﹣2)


(2)解:用线段依次连接各圆心,所得几何图形,如图4所示.

由图可知:该几何图形既轴对称图形,又是中心对称图形,

由对称性可得:该几何图形的所有的边都相等.

∴该图形的周长=12×( )=8


【解析】(1)对圆P与直线l和l2都相切、圆P与直线l和l1都相切、圆P与直线l1和l2都相切三种情况分别考虑,利用切线长定理和特殊角的三角函数值即可求出点P的坐标.(2)由图可知:该几何图形既轴对称图形,又是中心对称图形,它的所有的边都相等.只需求出其中的一条边就可以求出它的周长.
【考点精析】利用切线长定理和轴对称图形对题目进行判断即可得到答案,需要熟知从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角;两个完全一样的图形关于某条直线对折,如果两边能够完全重合,我们就说这两个图形成轴对称,这条直线就对称轴.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网