题目内容
【题目】某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:
方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.
(1)若a=6.
①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?
②按图乙的方案,能围成的矩形花圃的最大面积是多少?
(2)若0<a<6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.
【答案】(1)①AD的长是5米;②按图乙的方案,能围成的矩形花圃的最大面积是平方米;(2)第二种方案能围成面积最大的矩形花圃.
【解析】
(1)①设AB的长是x米,根据矩形的面积公式列出方程;
②列出面积关于x的函数关系式,再根据函数的性质解答;
(2)设AB=x,能围成的矩形花圃的面积为S,根据题意列出S关于x的函数关系,再通过求最值方法解答.
解:(1)①设AB的长是x米,则AD=20-3x,
根据题意得,x(20-3x)=25,
解得:x1=5,x2=,
当x=时,AD=15>6,
∴x=5,
∴AD=5,
答:AD的长是5米;
②设AB的长是x米,矩形花圃的最大面积是y平分米,则AD=(20-3x+6),
根据题意得,y=x(20-3x+6)=-x2+13x=-(x-)2+,
答:按图乙的方案,能围成的矩形花圃的最大面积是平方米;
(2)按图甲的方案,设AB=x,能围成的矩形花圃的面积为S,
∴S=x(20-3x)=-3x2+20x=-3(x-)2+,
当x=时,AD=10>a,
故第二种方案能围成面积最大的矩形花圃.
练习册系列答案
相关题目