题目内容
如图6,⊙O1与⊙O2相交于A、B两点,O2A切⊙O1于点A,O1O2与AB交于点C,与⊙O1交于点D.若AB=8,CD=2,则tan∠AO2C=__________
连接AO1首先注意到△ACO1是Rt△
∴AC2+O1C2=AO12=O1D2=(O1C+CD)2=(O1C+2)2
而AC=4 ∴16+O1C2=(O1C+2)2
解出O1C=3
∵O2A切⊙O1于点A ∴∠O1AO2=90°
而AC⊥O1O2
∴∠AO2C=∠O1AC
∴tan∠AO2C=tan∠O1AC=O1C/AC=3/4
∴AC2+O1C2=AO12=O1D2=(O1C+CD)2=(O1C+2)2
而AC=4 ∴16+O1C2=(O1C+2)2
解出O1C=3
∵O2A切⊙O1于点A ∴∠O1AO2=90°
而AC⊥O1O2
∴∠AO2C=∠O1AC
∴tan∠AO2C=tan∠O1AC=O1C/AC=3/4
练习册系列答案
相关题目