题目内容
【题目】在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.
(1)若∠ABE=40°,求∠EBC的度数;
(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.
【答案】
(1)解:∵AB=AC,DE是AB的垂直平分线
∴∠ABE=∠A=40°.
∴∠ABC=∠ACB=70°,
∴∠EBC=∠ABC﹣∠ABE=30°
(2)解:已知△ABC的周长为41cm,一边长为15cm,AB>BC,则AB=15cm,
∴BC=11cm.
根据垂直平分线的性质可得BE+CE=AC,
∴△BCE周长=BE+CE+BC=26cm
【解析】(1)已知AB=AC,要求∠EBC就先求出∠ABE的度数,利用线段垂直平分线的性质易求解.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC,则AB=15cm,求△BCE周长只需证明BE+CE=AC即可.
【考点精析】利用线段垂直平分线的性质对题目进行判断即可得到答案,需要熟知垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.
练习册系列答案
相关题目