题目内容

【题目】如图,已知直线l1∥l2 , 直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.

(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?

【答案】
(1)解:当点P在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:
过点P作PE∥l1,
∵l1∥l2,
∴PE∥l2∥l1,
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;
(2)解:ⅰ)当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:
过点P作PE∥l1
∴∠EPA=∠PAC,
∵l1∥l2,PE∥l1
∴PE∥l2
∴∠EPB=∠PBD,
∵∠EPB=∠EPA+∠APB =∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
ⅱ)当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.理由如下:
过点P作PE∥l2;
∴∠DBP=∠BPE;
∵l1∥l2,PE∥l2;
∴PE∥l1
∴∠EPA=∠PAC,
∵∠EPA=∠EPB+∠BPA=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
【解析】(1)当点P在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下: 过点P作PE∥l1,根据平行于同一直线的两条直线互相平行得出PE∥l2∥l1,根据二直线平行内错角相等得出∠PAC=∠1,∠PBD=∠2,根据角的和差及等量代换得出∠APB=∠1+∠2=∠PAC+∠PBD;
(2)①当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下: 过点P作PE∥l1根据二直线平行,内错角相等得出 ∠EPA=∠PAC, 根据平行于同一条直线的两条直线互相平行得出 PE∥l2,根据二直线平行内错角相等得出∠EPB=∠PBD, ,根据角的和差,及等量代换得出 ∠EPB=∠EPA+∠APB =∠PAC+∠APB, 从而得出结论∠PBD=∠PAC+∠APB;②当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.理由如下: 过点P作PE∥l2; 根据二直线平行,内错角相等得出∠DBP=∠BPE;根据平行于同一条直线的两条直线互相平行得出PE∥l1,根据二直线平行内错角相等得出∠EPA=∠PAC,根据角的和差,及等量代换得出∠EPA=∠EPB+∠BPA=∠PBD+∠APB,从而得出结论∠PAC=∠PBD+∠APB.
【考点精析】本题主要考查了平行线的判定与性质的相关知识点,需要掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网