题目内容

如图,在梯形ABCD中,ABCD,∠BCD=90°,BD平分∠ABC.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求
BE
BF
的值.
(1)证明:∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵ABCD,
∴∠ABD=∠BDC,
∴∠CBD=∠BDC,
∴DC=BC;

(2)等腰直角三角形.
理由如下:在△DEC和△BFC中,
DE=BF
∠EDC=∠FBC
DC=BC

∴△DEC≌△BFC(SAS),
∴CE=CF,∠ECD=∠BCF,
∴∠ECF=∠BCF+∠BCE=∠ECD+∠BCE=∠BCD=90°,
即△ECF是等腰直角三角形;

(3)∵BE:CE=1:2,
∴设BE=k,CE=2k,
则EF=
2
CE=2
2
k,
∵∠BEC=135°,∠CEF=45°,
∴∠BEF=135°-45°=90°,
∴BF=
k2+(2
2
k)
2
=3k,
BE
BF
=
k
3k
=
1
3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网