题目内容
【题目】如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式.
(2)足球第一次落地点C距守门员多少米?(取)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取)
【答案】(1);(2)13;(3)10.
【解析】
试题分析:(1)依题意应用待定系数法可得抛物线的表达式;(2)令y=0可求出x的两个值,再按实际情况筛选;(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD.
试题解析:如图,设第一次落地时,抛物线的表达式为.
由已知:当x=0时y=1,∴,解得.
∴足球开始飞出到第一次落地时,该抛物线的表达式为.
(2)令y=0,,解得(舍去).
∴足球第一次落地距守门员约13米.
(3)如图,第二次足球弹出后的距离为CD,
根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位),
∴,解得.
∴(米).
练习册系列答案
相关题目